YES 2.257 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ IFR

mainModule Main
  ((mod :: Int  ->  Int  ->  Int) :: Int  ->  Int  ->  Int)

module Main where
  import qualified Prelude



If Reductions:
The following If expression
if primGEqNatS x y then primModNatS (primMinusNatS x y) (Succ y) else Succ x

is transformed to
primModNatS0 x y True = primModNatS (primMinusNatS x y) (Succ y)
primModNatS0 x y False = Succ x

The following If expression
if primGEqNatS x y then primModNatP (primMinusNatS x y) (Succ y) else primMinusNatS y x

is transformed to
primModNatP0 x y True = primModNatP (primMinusNatS x y) (Succ y)
primModNatP0 x y False = primMinusNatS y x



↳ HASKELL
  ↳ IFR
HASKELL
      ↳ BR

mainModule Main
  ((mod :: Int  ->  Int  ->  Int) :: Int  ->  Int  ->  Int)

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule Main
  ((mod :: Int  ->  Int  ->  Int) :: Int  ->  Int  ->  Int)

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ Narrow

mainModule Main
  (mod :: Int  ->  Int  ->  Int)

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMinusNatS(Succ(vz560), Succ(vz550)) → new_primMinusNatS(vz560, vz550)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
QDP
                    ↳ DependencyGraphProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatP0(vz55, vz56, Zero, Zero) → new_primModNatP00(vz55, vz56)
new_primModNatP(Succ(Succ(vz3000)), Zero) → new_primModNatP(new_primMinusNatS0(vz3000), Zero)
new_primModNatP0(vz55, vz56, Succ(vz570), Zero) → new_primModNatP(new_primMinusNatS2(vz55, vz56), Succ(vz56))
new_primModNatP0(vz55, vz56, Succ(vz570), Succ(vz580)) → new_primModNatP0(vz55, vz56, vz570, vz580)
new_primModNatP(Succ(Zero), Zero) → new_primModNatP(new_primMinusNatS1, Zero)
new_primModNatP00(vz55, vz56) → new_primModNatP(new_primMinusNatS2(vz55, vz56), Succ(vz56))
new_primModNatP(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatP0(vz3000, vz4000, vz3000, vz4000)

The TRS R consists of the following rules:

new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS1Zero
new_primMinusNatS2(vz56, vz55) → new_primMinusNatS3(vz56, vz55)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS0(vz4000) → Succ(vz4000)
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS1
new_primMinusNatS3(Succ(x0), Zero)
new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
QDP
                          ↳ UsableRulesProof
                        ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatP(Succ(Succ(vz3000)), Zero) → new_primModNatP(new_primMinusNatS0(vz3000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS1Zero
new_primMinusNatS2(vz56, vz55) → new_primMinusNatS3(vz56, vz55)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS0(vz4000) → Succ(vz4000)
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS1
new_primMinusNatS3(Succ(x0), Zero)
new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                          ↳ UsableRulesProof
QDP
                              ↳ QReductionProof
                        ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatP(Succ(Succ(vz3000)), Zero) → new_primModNatP(new_primMinusNatS0(vz3000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(vz4000) → Succ(vz4000)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS1
new_primMinusNatS3(Succ(x0), Zero)
new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS1
new_primMinusNatS3(Succ(x0), Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
QDP
                                  ↳ RuleRemovalProof
                        ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatP(Succ(Succ(vz3000)), Zero) → new_primModNatP(new_primMinusNatS0(vz3000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(vz4000) → Succ(vz4000)

The set Q consists of the following terms:

new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

new_primModNatP(Succ(Succ(vz3000)), Zero) → new_primModNatP(new_primMinusNatS0(vz3000), Zero)

Strictly oriented rules of the TRS R:

new_primMinusNatS0(vz4000) → Succ(vz4000)

Used ordering: POLO with Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + 2·x1   
POL(Zero) = 0   
POL(new_primMinusNatS0(x1)) = 2 + 2·x1   
POL(new_primModNatP(x1, x2)) = x1 + x2   



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ RuleRemovalProof
QDP
                                      ↳ PisEmptyProof
                        ↳ QDP
                  ↳ QDP

Q DP problem:
P is empty.
R is empty.
The set Q consists of the following terms:

new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
QDP
                          ↳ UsableRulesProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatP0(vz55, vz56, Zero, Zero) → new_primModNatP00(vz55, vz56)
new_primModNatP0(vz55, vz56, Succ(vz570), Zero) → new_primModNatP(new_primMinusNatS2(vz55, vz56), Succ(vz56))
new_primModNatP0(vz55, vz56, Succ(vz570), Succ(vz580)) → new_primModNatP0(vz55, vz56, vz570, vz580)
new_primModNatP00(vz55, vz56) → new_primModNatP(new_primMinusNatS2(vz55, vz56), Succ(vz56))
new_primModNatP(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatP0(vz3000, vz4000, vz3000, vz4000)

The TRS R consists of the following rules:

new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS1Zero
new_primMinusNatS2(vz56, vz55) → new_primMinusNatS3(vz56, vz55)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS0(vz4000) → Succ(vz4000)
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS1
new_primMinusNatS3(Succ(x0), Zero)
new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
QDP
                              ↳ QReductionProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatP0(vz55, vz56, Zero, Zero) → new_primModNatP00(vz55, vz56)
new_primModNatP0(vz55, vz56, Succ(vz570), Zero) → new_primModNatP(new_primMinusNatS2(vz55, vz56), Succ(vz56))
new_primModNatP0(vz55, vz56, Succ(vz570), Succ(vz580)) → new_primModNatP0(vz55, vz56, vz570, vz580)
new_primModNatP00(vz55, vz56) → new_primModNatP(new_primMinusNatS2(vz55, vz56), Succ(vz56))
new_primModNatP(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatP0(vz3000, vz4000, vz3000, vz4000)

The TRS R consists of the following rules:

new_primMinusNatS2(vz56, vz55) → new_primMinusNatS3(vz56, vz55)
new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS1
new_primMinusNatS3(Succ(x0), Zero)
new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS1
new_primMinusNatS0(x0)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
QDP
                                  ↳ Rewriting
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatP0(vz55, vz56, Zero, Zero) → new_primModNatP00(vz55, vz56)
new_primModNatP0(vz55, vz56, Succ(vz570), Zero) → new_primModNatP(new_primMinusNatS2(vz55, vz56), Succ(vz56))
new_primModNatP0(vz55, vz56, Succ(vz570), Succ(vz580)) → new_primModNatP0(vz55, vz56, vz570, vz580)
new_primModNatP00(vz55, vz56) → new_primModNatP(new_primMinusNatS2(vz55, vz56), Succ(vz56))
new_primModNatP(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatP0(vz3000, vz4000, vz3000, vz4000)

The TRS R consists of the following rules:

new_primMinusNatS2(vz56, vz55) → new_primMinusNatS3(vz56, vz55)
new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_primModNatP0(vz55, vz56, Succ(vz570), Zero) → new_primModNatP(new_primMinusNatS2(vz55, vz56), Succ(vz56)) at position [0] we obtained the following new rules:

new_primModNatP0(vz55, vz56, Succ(vz570), Zero) → new_primModNatP(new_primMinusNatS3(vz55, vz56), Succ(vz56))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ Rewriting
QDP
                                      ↳ Rewriting
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatP0(vz55, vz56, Succ(vz570), Zero) → new_primModNatP(new_primMinusNatS3(vz55, vz56), Succ(vz56))
new_primModNatP0(vz55, vz56, Zero, Zero) → new_primModNatP00(vz55, vz56)
new_primModNatP0(vz55, vz56, Succ(vz570), Succ(vz580)) → new_primModNatP0(vz55, vz56, vz570, vz580)
new_primModNatP00(vz55, vz56) → new_primModNatP(new_primMinusNatS2(vz55, vz56), Succ(vz56))
new_primModNatP(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatP0(vz3000, vz4000, vz3000, vz4000)

The TRS R consists of the following rules:

new_primMinusNatS2(vz56, vz55) → new_primMinusNatS3(vz56, vz55)
new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_primModNatP00(vz55, vz56) → new_primModNatP(new_primMinusNatS2(vz55, vz56), Succ(vz56)) at position [0] we obtained the following new rules:

new_primModNatP00(vz55, vz56) → new_primModNatP(new_primMinusNatS3(vz55, vz56), Succ(vz56))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
QDP
                                          ↳ UsableRulesProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatP0(vz55, vz56, Zero, Zero) → new_primModNatP00(vz55, vz56)
new_primModNatP0(vz55, vz56, Succ(vz570), Zero) → new_primModNatP(new_primMinusNatS3(vz55, vz56), Succ(vz56))
new_primModNatP0(vz55, vz56, Succ(vz570), Succ(vz580)) → new_primModNatP0(vz55, vz56, vz570, vz580)
new_primModNatP00(vz55, vz56) → new_primModNatP(new_primMinusNatS3(vz55, vz56), Succ(vz56))
new_primModNatP(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatP0(vz3000, vz4000, vz3000, vz4000)

The TRS R consists of the following rules:

new_primMinusNatS2(vz56, vz55) → new_primMinusNatS3(vz56, vz55)
new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ UsableRulesProof
QDP
                                              ↳ QReductionProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatP0(vz55, vz56, Succ(vz570), Zero) → new_primModNatP(new_primMinusNatS3(vz55, vz56), Succ(vz56))
new_primModNatP0(vz55, vz56, Zero, Zero) → new_primModNatP00(vz55, vz56)
new_primModNatP0(vz55, vz56, Succ(vz570), Succ(vz580)) → new_primModNatP0(vz55, vz56, vz570, vz580)
new_primModNatP00(vz55, vz56) → new_primModNatP(new_primMinusNatS3(vz55, vz56), Succ(vz56))
new_primModNatP(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatP0(vz3000, vz4000, vz3000, vz4000)

The TRS R consists of the following rules:

new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS2(x0, x1)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ QReductionProof
QDP
                                                  ↳ QDPOrderProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatP0(vz55, vz56, Zero, Zero) → new_primModNatP00(vz55, vz56)
new_primModNatP0(vz55, vz56, Succ(vz570), Zero) → new_primModNatP(new_primMinusNatS3(vz55, vz56), Succ(vz56))
new_primModNatP0(vz55, vz56, Succ(vz570), Succ(vz580)) → new_primModNatP0(vz55, vz56, vz570, vz580)
new_primModNatP00(vz55, vz56) → new_primModNatP(new_primMinusNatS3(vz55, vz56), Succ(vz56))
new_primModNatP(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatP0(vz3000, vz4000, vz3000, vz4000)

The TRS R consists of the following rules:

new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_primModNatP0(vz55, vz56, Succ(vz570), Zero) → new_primModNatP(new_primMinusNatS3(vz55, vz56), Succ(vz56))
new_primModNatP00(vz55, vz56) → new_primModNatP(new_primMinusNatS3(vz55, vz56), Succ(vz56))
new_primModNatP(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatP0(vz3000, vz4000, vz3000, vz4000)
The remaining pairs can at least be oriented weakly.

new_primModNatP0(vz55, vz56, Zero, Zero) → new_primModNatP00(vz55, vz56)
new_primModNatP0(vz55, vz56, Succ(vz570), Succ(vz580)) → new_primModNatP0(vz55, vz56, vz570, vz580)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_primMinusNatS3(x1, x2)) = x1   
POL(new_primModNatP(x1, x2)) = x1   
POL(new_primModNatP0(x1, x2, x3, x4)) = 1 + x1   
POL(new_primModNatP00(x1, x2)) = 1 + x1   

The following usable rules [17] were oriented:

new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ QReductionProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
QDP
                                                      ↳ DependencyGraphProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatP0(vz55, vz56, Zero, Zero) → new_primModNatP00(vz55, vz56)
new_primModNatP0(vz55, vz56, Succ(vz570), Succ(vz580)) → new_primModNatP0(vz55, vz56, vz570, vz580)

The TRS R consists of the following rules:

new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ QReductionProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
QDP
                                                          ↳ UsableRulesProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatP0(vz55, vz56, Succ(vz570), Succ(vz580)) → new_primModNatP0(vz55, vz56, vz570, vz580)

The TRS R consists of the following rules:

new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ QReductionProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
QDP
                                                              ↳ QReductionProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatP0(vz55, vz56, Succ(vz570), Succ(vz580)) → new_primModNatP0(vz55, vz56, vz570, vz580)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ QReductionProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
                                                            ↳ QDP
                                                              ↳ QReductionProof
QDP
                                                                  ↳ QDPSizeChangeProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatP0(vz55, vz56, Succ(vz570), Succ(vz580)) → new_primModNatP0(vz55, vz56, vz570, vz580)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(vz50, vz51, Succ(vz520), Zero) → new_primModNatS(new_primMinusNatS2(vz50, vz51), Succ(vz51))
new_primModNatS00(vz50, vz51) → new_primModNatS(new_primMinusNatS2(vz50, vz51), Succ(vz51))
new_primModNatS(Succ(Zero), Zero) → new_primModNatS(new_primMinusNatS1, Zero)
new_primModNatS(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatS0(vz3000, vz4000, vz3000, vz4000)
new_primModNatS(Succ(Succ(vz3000)), Zero) → new_primModNatS(new_primMinusNatS0(vz3000), Zero)
new_primModNatS0(vz50, vz51, Succ(vz520), Succ(vz530)) → new_primModNatS0(vz50, vz51, vz520, vz530)
new_primModNatS0(vz50, vz51, Zero, Zero) → new_primModNatS00(vz50, vz51)

The TRS R consists of the following rules:

new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS1Zero
new_primMinusNatS2(vz56, vz55) → new_primMinusNatS3(vz56, vz55)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS0(vz4000) → Succ(vz4000)
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS1
new_primMinusNatS3(Succ(x0), Zero)
new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
QDP
                          ↳ UsableRulesProof
                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS(Succ(Succ(vz3000)), Zero) → new_primModNatS(new_primMinusNatS0(vz3000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS1Zero
new_primMinusNatS2(vz56, vz55) → new_primMinusNatS3(vz56, vz55)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS0(vz4000) → Succ(vz4000)
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS1
new_primMinusNatS3(Succ(x0), Zero)
new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                          ↳ UsableRulesProof
QDP
                              ↳ QReductionProof
                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS(Succ(Succ(vz3000)), Zero) → new_primModNatS(new_primMinusNatS0(vz3000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(vz4000) → Succ(vz4000)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS1
new_primMinusNatS3(Succ(x0), Zero)
new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS1
new_primMinusNatS3(Succ(x0), Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
QDP
                                  ↳ RuleRemovalProof
                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS(Succ(Succ(vz3000)), Zero) → new_primModNatS(new_primMinusNatS0(vz3000), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(vz4000) → Succ(vz4000)

The set Q consists of the following terms:

new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

new_primModNatS(Succ(Succ(vz3000)), Zero) → new_primModNatS(new_primMinusNatS0(vz3000), Zero)

Strictly oriented rules of the TRS R:

new_primMinusNatS0(vz4000) → Succ(vz4000)

Used ordering: POLO with Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + 2·x1   
POL(Zero) = 0   
POL(new_primMinusNatS0(x1)) = 2 + 2·x1   
POL(new_primModNatS(x1, x2)) = x1 + x2   



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ RuleRemovalProof
QDP
                                      ↳ PisEmptyProof
                        ↳ QDP

Q DP problem:
P is empty.
R is empty.
The set Q consists of the following terms:

new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
QDP
                          ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(vz50, vz51, Succ(vz520), Zero) → new_primModNatS(new_primMinusNatS2(vz50, vz51), Succ(vz51))
new_primModNatS00(vz50, vz51) → new_primModNatS(new_primMinusNatS2(vz50, vz51), Succ(vz51))
new_primModNatS(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatS0(vz3000, vz4000, vz3000, vz4000)
new_primModNatS0(vz50, vz51, Succ(vz520), Succ(vz530)) → new_primModNatS0(vz50, vz51, vz520, vz530)
new_primModNatS0(vz50, vz51, Zero, Zero) → new_primModNatS00(vz50, vz51)

The TRS R consists of the following rules:

new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS1Zero
new_primMinusNatS2(vz56, vz55) → new_primMinusNatS3(vz56, vz55)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS0(vz4000) → Succ(vz4000)
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS1
new_primMinusNatS3(Succ(x0), Zero)
new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
QDP
                              ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(vz50, vz51, Succ(vz520), Zero) → new_primModNatS(new_primMinusNatS2(vz50, vz51), Succ(vz51))
new_primModNatS00(vz50, vz51) → new_primModNatS(new_primMinusNatS2(vz50, vz51), Succ(vz51))
new_primModNatS(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatS0(vz3000, vz4000, vz3000, vz4000)
new_primModNatS0(vz50, vz51, Succ(vz520), Succ(vz530)) → new_primModNatS0(vz50, vz51, vz520, vz530)
new_primModNatS0(vz50, vz51, Zero, Zero) → new_primModNatS00(vz50, vz51)

The TRS R consists of the following rules:

new_primMinusNatS2(vz56, vz55) → new_primMinusNatS3(vz56, vz55)
new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS1
new_primMinusNatS3(Succ(x0), Zero)
new_primMinusNatS0(x0)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS1
new_primMinusNatS0(x0)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
QDP
                                  ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(vz50, vz51, Succ(vz520), Zero) → new_primModNatS(new_primMinusNatS2(vz50, vz51), Succ(vz51))
new_primModNatS00(vz50, vz51) → new_primModNatS(new_primMinusNatS2(vz50, vz51), Succ(vz51))
new_primModNatS(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatS0(vz3000, vz4000, vz3000, vz4000)
new_primModNatS0(vz50, vz51, Zero, Zero) → new_primModNatS00(vz50, vz51)
new_primModNatS0(vz50, vz51, Succ(vz520), Succ(vz530)) → new_primModNatS0(vz50, vz51, vz520, vz530)

The TRS R consists of the following rules:

new_primMinusNatS2(vz56, vz55) → new_primMinusNatS3(vz56, vz55)
new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_primModNatS0(vz50, vz51, Succ(vz520), Zero) → new_primModNatS(new_primMinusNatS2(vz50, vz51), Succ(vz51)) at position [0] we obtained the following new rules:

new_primModNatS0(vz50, vz51, Succ(vz520), Zero) → new_primModNatS(new_primMinusNatS3(vz50, vz51), Succ(vz51))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ Rewriting
QDP
                                      ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS00(vz50, vz51) → new_primModNatS(new_primMinusNatS2(vz50, vz51), Succ(vz51))
new_primModNatS0(vz50, vz51, Succ(vz520), Zero) → new_primModNatS(new_primMinusNatS3(vz50, vz51), Succ(vz51))
new_primModNatS(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatS0(vz3000, vz4000, vz3000, vz4000)
new_primModNatS0(vz50, vz51, Succ(vz520), Succ(vz530)) → new_primModNatS0(vz50, vz51, vz520, vz530)
new_primModNatS0(vz50, vz51, Zero, Zero) → new_primModNatS00(vz50, vz51)

The TRS R consists of the following rules:

new_primMinusNatS2(vz56, vz55) → new_primMinusNatS3(vz56, vz55)
new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_primModNatS00(vz50, vz51) → new_primModNatS(new_primMinusNatS2(vz50, vz51), Succ(vz51)) at position [0] we obtained the following new rules:

new_primModNatS00(vz50, vz51) → new_primModNatS(new_primMinusNatS3(vz50, vz51), Succ(vz51))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
QDP
                                          ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(vz50, vz51, Succ(vz520), Zero) → new_primModNatS(new_primMinusNatS3(vz50, vz51), Succ(vz51))
new_primModNatS(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatS0(vz3000, vz4000, vz3000, vz4000)
new_primModNatS00(vz50, vz51) → new_primModNatS(new_primMinusNatS3(vz50, vz51), Succ(vz51))
new_primModNatS0(vz50, vz51, Zero, Zero) → new_primModNatS00(vz50, vz51)
new_primModNatS0(vz50, vz51, Succ(vz520), Succ(vz530)) → new_primModNatS0(vz50, vz51, vz520, vz530)

The TRS R consists of the following rules:

new_primMinusNatS2(vz56, vz55) → new_primMinusNatS3(vz56, vz55)
new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ UsableRulesProof
QDP
                                              ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(vz50, vz51, Succ(vz520), Zero) → new_primModNatS(new_primMinusNatS3(vz50, vz51), Succ(vz51))
new_primModNatS(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatS0(vz3000, vz4000, vz3000, vz4000)
new_primModNatS00(vz50, vz51) → new_primModNatS(new_primMinusNatS3(vz50, vz51), Succ(vz51))
new_primModNatS0(vz50, vz51, Zero, Zero) → new_primModNatS00(vz50, vz51)
new_primModNatS0(vz50, vz51, Succ(vz520), Succ(vz530)) → new_primModNatS0(vz50, vz51, vz520, vz530)

The TRS R consists of the following rules:

new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS2(x0, x1)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS2(x0, x1)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ QReductionProof
QDP
                                                  ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(vz50, vz51, Succ(vz520), Zero) → new_primModNatS(new_primMinusNatS3(vz50, vz51), Succ(vz51))
new_primModNatS(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatS0(vz3000, vz4000, vz3000, vz4000)
new_primModNatS00(vz50, vz51) → new_primModNatS(new_primMinusNatS3(vz50, vz51), Succ(vz51))
new_primModNatS0(vz50, vz51, Succ(vz520), Succ(vz530)) → new_primModNatS0(vz50, vz51, vz520, vz530)
new_primModNatS0(vz50, vz51, Zero, Zero) → new_primModNatS00(vz50, vz51)

The TRS R consists of the following rules:

new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_primModNatS(Succ(Succ(vz3000)), Succ(vz4000)) → new_primModNatS0(vz3000, vz4000, vz3000, vz4000)
The remaining pairs can at least be oriented weakly.

new_primModNatS0(vz50, vz51, Succ(vz520), Zero) → new_primModNatS(new_primMinusNatS3(vz50, vz51), Succ(vz51))
new_primModNatS00(vz50, vz51) → new_primModNatS(new_primMinusNatS3(vz50, vz51), Succ(vz51))
new_primModNatS0(vz50, vz51, Succ(vz520), Succ(vz530)) → new_primModNatS0(vz50, vz51, vz520, vz530)
new_primModNatS0(vz50, vz51, Zero, Zero) → new_primModNatS00(vz50, vz51)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_primMinusNatS3(x1, x2)) = x1   
POL(new_primModNatS(x1, x2)) = x1   
POL(new_primModNatS0(x1, x2, x3, x4)) = x1   
POL(new_primModNatS00(x1, x2)) = x1   

The following usable rules [17] were oriented:

new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ QReductionProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
QDP
                                                      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(vz50, vz51, Succ(vz520), Zero) → new_primModNatS(new_primMinusNatS3(vz50, vz51), Succ(vz51))
new_primModNatS00(vz50, vz51) → new_primModNatS(new_primMinusNatS3(vz50, vz51), Succ(vz51))
new_primModNatS0(vz50, vz51, Zero, Zero) → new_primModNatS00(vz50, vz51)
new_primModNatS0(vz50, vz51, Succ(vz520), Succ(vz530)) → new_primModNatS0(vz50, vz51, vz520, vz530)

The TRS R consists of the following rules:

new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ QReductionProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
QDP
                                                          ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(vz50, vz51, Succ(vz520), Succ(vz530)) → new_primModNatS0(vz50, vz51, vz520, vz530)

The TRS R consists of the following rules:

new_primMinusNatS3(Zero, Succ(vz550)) → Zero
new_primMinusNatS3(Succ(vz560), Succ(vz550)) → new_primMinusNatS3(vz560, vz550)
new_primMinusNatS3(Zero, Zero) → Zero
new_primMinusNatS3(Succ(vz560), Zero) → Succ(vz560)

The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ QReductionProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
QDP
                                                              ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(vz50, vz51, Succ(vz520), Succ(vz530)) → new_primModNatS0(vz50, vz51, vz520, vz530)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS3(Zero, Zero)
new_primMinusNatS3(Succ(x0), Succ(x1))
new_primMinusNatS3(Zero, Succ(x0))
new_primMinusNatS3(Succ(x0), Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                          ↳ UsableRulesProof
                            ↳ QDP
                              ↳ QReductionProof
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ UsableRulesProof
                                            ↳ QDP
                                              ↳ QReductionProof
                                                ↳ QDP
                                                  ↳ QDPOrderProof
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
                                                            ↳ QDP
                                                              ↳ QReductionProof
QDP
                                                                  ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(vz50, vz51, Succ(vz520), Succ(vz530)) → new_primModNatS0(vz50, vz51, vz520, vz530)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: